| Enrollment No: | Exam Seat No: |
|----------------|---------------|
|----------------|---------------|

## C.U.SHAH UNIVERSITY

## Winter Examination-2015

**Subject Name: Complex Analysis** 

Subject Code: 4SC05CAC1 Branch: B.Sc. (Mathematics)

**Semester:** 5 **Date** : 02/12/2015 **Time** :2:30 **To** 5:30 **Marks** :70 **Instructions**:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1

- (A) The function  $\bar{z}$  is not analytic at any point. Statement is True or False? (01)
- (B) State fundamental theorem of algebra. (01)
- (C) Convert in to polar form  $f(z) = z + \frac{1}{z}$  and find its real and imaginary components. (02)
- (D) Prove that  $f(z) = z + \bar{z}$  is real valued function. (02)
- (E) State sufficient condition for a function f(z) to be analytic. (02)
- (F) Show that  $\phi(x, y) = e^x \cos y$  is harmonic function. (02)
- (G) Find invariant points for  $f(z) = \frac{3z-5}{z+1}$ . (02)
- (H) Find arc length for the curve  $c: z(t) = 1 3it, t \in [-1,1]$ . (02)
- Q-2 Attempt all questions (14)
- (A) Suppose f(z) = u + iv,  $z_0 = x_0 + iy_0$  and  $w_0 = u_0 + iv_0$ , then prove that  $\lim_{z \to z_0} f(z) = w_0 \text{ if and only if } \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \text{ and}$  (06)

 $\lim\nolimits_{(x,y)\to(x_0,y_0)}v(x,y)=v_0$ 

(B) If 
$$f(z) = \begin{cases} \frac{ax^3 - by^3}{ax^2 + by^2} + i \frac{ax^3 + by^3}{ax^2 + by^2}, z \neq 0 \\ 0, z = 0 \end{cases}$$
 then prove that C-R equations are

satisfied at origin but f'(z) does not exists.

Page 1 || 3



| (C)        | Check whether $\lim_{z\to 0} \frac{\bar{z}}{z}$ exists or not? If it exists, find limit.                                                                                                                                                                                                                                              | (03)         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Q-3<br>(A) | Attempt all questions If $f(z) = u(x, y) + i v(x, y)$ is differentiable at $z \in \mathbb{C}$ then prove that first order partial derivative of $u$ and $v$ are exist and satisfy the relation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ . | (14)<br>(06) |
| (B)        | Prove that $u = x^2 - y^2$ and $v = \frac{-y}{x^2 + y^2}$ satisfy Laplace equation. However                                                                                                                                                                                                                                           | (04)         |
| (C)        | f = u + i v is not analytic function.<br>Prove that $f(z) =  z ^2$ is not differentiable at $z \neq 0$ .                                                                                                                                                                                                                              | (04)         |
| Q-4<br>(A) | Attempt all questions Let $f(z) = u + iv$ be analytic in domain $D$ then prove that real component $u$ and imaginary component $v$ are harmonic functions.                                                                                                                                                                            | (14)<br>(05) |
| (B)        | In usual notation state and prove polar form of $C - R$ equation.                                                                                                                                                                                                                                                                     | (05)         |
| (C)        | Evaluate: $\int_{c} \frac{e^{z}}{(z-3)(z-1)} dz$ , where c is circle $ z  = 4$ .                                                                                                                                                                                                                                                      | (04)         |
| Q-5<br>(A) | Attempt all questions<br>Show that $u(x,y) = y^3 - 3x^2y$ is harmonic. Find harmonic conjugate of $u(x,y)$ . Also find analytic function.                                                                                                                                                                                             | (14)<br>(06) |
| (B)        | Find an analytic function $f(z) = u + iv$ such that $u - v = x + y$ .                                                                                                                                                                                                                                                                 | (04)         |
| (C)        | State and prove Liouville's theorem.                                                                                                                                                                                                                                                                                                  | (04)         |
| Q-6<br>(A) | Attempt all questions Find $\int_c z^2 dz$ where $c$ is a contour which is part of $y = x^2$ from point $z = 0$ to $z = 2 + i$ .                                                                                                                                                                                                      | (14)<br>(05) |
| (B)        | State and prove ML – inequality.                                                                                                                                                                                                                                                                                                      | (05)         |
| (C)        | Evaluate: $\int_{c} \frac{z^2 e^z}{(z-1)^3} dz$ , where $c:  z  = 2$ .                                                                                                                                                                                                                                                                | (04)         |
| Q-7<br>(A) | Attempt all questions Let $c$ be a simple closed contour in $\mathbb{C}$ . Suppose $f$ is analytic within and on $c$ then prove that $\int_c f(z) = 0$ . Hence evaluate $\int_c \frac{\sin z}{(z-4)(z-3)} \ dz$ , where $c =  z  = 1$ .                                                                                               | (14)<br>(07) |



(B) If four points  $z_1, z_2, z_3, z_4$  of the z – plane map on to the points  $w_1, w_2, w_3, w_4$  of the W –plane respectively under the bilinear transformation then prove that

(07)



 $\frac{(w_1-w_2)(w_3-w_4)}{(w_1-w_4)(w_3-w_2)} = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_4)(z_3-z_2)}.$  Also Find bilinear transformation that maps the point  $z_1 = -1, z_2 = 0, z_3 = 1$  on to  $w_1 = -1, w_2 = -i, w_3 = 1$  respectively.

## Q-8 Attempt all questions

(14)

- (A) Prove that |z| = r in Z plane transform to a circle in W plane using transformation w = z + (3 + 4i). Also draw its roughsketch.
- (B) Find image of |z + 1| = 1 under the transformation  $\frac{1}{z}$  and draw its rough sketch. (05)
- (C) Prove that  $\left| \int_{c} \frac{1}{z^2 1} dz \right| \le \frac{2\pi}{3}$ , where c: |z| = 2 is upper half of the circle. (04)